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Overview
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• Problem Summary
• Flow Solver and Mesh Generator Tools
• Mesh Generation Procedure
• Results

– Mesh Parameter Study
– Grid Convergence Study
– Adaption Study

• Recent Results



Problem Summary
• Develop best-practice mesh from mesh-parameter study (α = 8∘) on 2D 

HLCRM cut to determine effect of mesh on solution. 
• Perform grid-convergence study (α = 8∘, 16∘)
• Perform adaptive mesh study (α = 8∘, 16∘)
• Flow Parameters:
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Chimera Grid Tools (CGT)
• Collection of software tools for pre- and post-processing of 

CFD simulations using structured overset grids
• Geometry/Grid Tools: geometry/grid processing,

algebraic and hyperbolic surface and volume grid generation
• Analysis Tools: grid quality, aerodynamic loads, flow solution
• High Level Tools: OVERGRID graphical interface, Script 

Library (200+ macros) 
Chan, W., “Advances in software tools for pre-processing and post-processing of overset grid computations,” 2004. URL
https://ntrs.nasa.gov/search.jsp?R=20050186738.
Chan, W. M., “Developments in strategies and software tools for overset structured grid generation and connectivity,” 20th
AIAA Computational Fluid Dynamics Conference 2011, American Institute of Aeronautics and Astronautics, Reston, Virigina,
2011. https://doi.org/10.2514/6.2011-3051, URL http://arc.aiaa.org/doi/10.2514/6.2011-3051.

https://ntrs.nasa.gov/search.jsp%3FR=20050186738


Mesh Generation Procedure
• Surface Processing

– Convert IGES/STEP file to Plot3D format with fine resolution using 
PointwiseTM

– Redistribute points for initial curves in CGT
• Cluster points at regions of high curvature, trailing edges
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Mesh Generation Procedure
• Volume Mesh Generation

– Near-body hyperbolic grids generated in CGT
– Off-body Cartesian grids generated in OVERFLOW

• Domain Connectivity
– X-ray hole-cutting using OVERFLOW
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• Implicit Finite-Difference on Structured Overset Grids
– 3rd Order HLLC scheme with Koren Limiter 
– SSOR solver, non-time accurate time-stepping
– Multi-level off-body box mesh generation, X-ray based domain connectivity

• Spalart-Allmaras Turbulence Model Verification
– 2D Airfoil Near Wake – 500c Far-Field Extent

OVERFLOW
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Nichols, R. H., Tramel, R. W., and Buning, P. G., “Solver and turbulence model upgrades to OVERFLOW 2 for unsteady and high-speed 
applications,” Collection of Technical Papers - AIAA Applied Aerodynamics Conference, Vol. 1, American Institute of Aeronautics and 
Astronautics, Reston, Virigina, 2006, pp. 91–124. https://doi.org/10.2514/6.2006-2824, URL http://arc.aiaa.org/doi/10.2514/6.2006-2824.



Mesh Parameters
• Best practice mesh based on:

– A priori knowledge of physics 
(shear layers, wakes, etc.)

– O vs C mesh topology
– Mesh parameter study
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Mesh Parameter Values
𝚫𝜽𝑳𝑬 (Leading Edge Max Turning 
Angle ) 0.125∘, 0.25∘, 0.5∘, 𝟏∘, 2∘

𝒏𝒑𝑻𝑬 (# of pts. on trailing edge) 3, 5, 9, 11, 17, 21

Stretching Ratio 1.05, 1.1, 1.15, 1.2, 1.3, 1.4
𝚫𝒔𝒎𝒂𝒙 (% of 𝒄𝒓𝒆𝒇, Max tangential 
wall spacing) 1.0, 1.33, 2.0, 3.0, 4.5

Δ𝑠,-.. (Wall spacing) 4.323×10/0

Δ𝑠,123 (Wake-grid spacing at 
trailing edge) 5Δ𝑠,

𝚫𝒔𝑺𝑳 ( ×𝚫𝐬𝐰, Shear-layer spacing) 25, 50, 100, 200, 400

ℎ67 (Shear-layer center offset) 0.028

Near-Body Mesh Topology O mesh

Far-Field Distance 1000𝑐89:𝒏𝒑𝑻𝑬

𝚫𝜽𝑳𝑬

𝚫𝒔𝒎𝒂𝒙

𝚫𝒔𝒎𝒂𝒙 SR

𝚫𝒔𝑺𝑳



• Resolve wake of forward elements
Shear-Layer Spacing
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Band of Uniform 
Normal Spacing

ℎ./

Δ𝑠!" = 100Δ𝑠#

Spacing applied to slat to add resolution for 
the shear layer in cove

Rogers, S. E., “Progress in high-lift aerodynamic calculations,” Journal of Aircraft, Vol. 31, No. 6, 1994, pp. 1244–1251. 
https://doi.org/10.2514/3.46642, URL http://arc.aiaa.org/doi/10.2514/3.46642.



Wake Refinement Block
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Main wake deceleration

Flap separation

Wake Distance = 2𝒄𝒓𝒆𝒇



Wake Refinement Block
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𝑙 = 2×𝑐#$%

Δ𝑠 = 0.25Δ𝑠89:

Height expanded 
for alpha-sweeps 
required for mesh-
parameter study

ℎ = 1.4×𝑐#$%



C vs O mesh
• Can potentially avoid cons of O mesh through overset-

framework and wake-grid
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Pros Cons

O Mesh • No explicit wake 
boundary

• Good BL clustering for 
finite-thickness TE

• Poor downstream wake 
resolution

C Mesh • Natural clustering at TE 
• Fine wake resolution 

• Explicit boundary in wake
• Only good for single 

AoA/excessive tight 
spacing far downstream

• Poor aspect ratio for 
finite-thickness TE 

C Mesh

O Mesh
Split Mesh



C vs O mesh
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Added wake grids

O MeshC Mesh

𝚫𝐬𝒘𝒈𝑻𝑬

TE Cap Grid

Split Mesh



Hole-Cutting
• DCF-XRAYS used to set overlap between meshes
• Hole-Cutting Goals:

– Minimize overlap, restrict overlap to cells of similar size & orientation
• Hole-cutting approach slightly deviates from typical best-practice

– Off-Body (OB) & Near-Body (NB)
• Use 8th outer-most shell from NB grids

– Near-body & Near-Body
– Wake Grid & Near-Body
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Hole-Cutting (cont’d.)

Near-body & Near-Body

Wake Grid & Near-Body

Wake grid cut 
like respective 
NB-mesh

Wake grid wraps tightly around finite-
thickness trailing edge

Overlap between wake and 
respective NB-grid occurs at 
outer edges of wake grid

Overlap occurs generally along dotted 
lines



Mesh Parameter Study
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Params. Baseline 
Values

𝑛$%& 9
𝛥𝜃'& 1.0
SR 1.2
𝛥𝑠()* 0.03c+,-
𝛥𝑠.' 100𝛥𝑠#

(# of pts. on TE) 

(Max LE Turning Angle) 

(Max Tan. Surf. Spacing)

(Shear-layer Spacing)

CoarseFine CoarseFine



Mesh Parameter Study
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Baseline parameter values



Mesh Parameter Study
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Params. Baseline 
Values

𝑛$%& 9
𝛥𝜃'& 1.0
SR 1.2
𝛥𝑠()* 0.03c+,-
𝛥𝑠.' 100𝛥𝑠#

(# of pts. on TE) 

(Max LE Turning Angle) 

(Max Tan. Surf. Spacing)

(Shear-layer Spacing)

CoarseFine CoarseFine



Mesh Convergence Study
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• Successive halving of each grid-spacing parameters (except for wall-
spacing), SR = 1.15

• 𝛼 = 8∘, 16∘

Refinement 
Level

𝒏𝒑𝑻𝑬
(# of pts. 
at T.E.)

𝚫𝜽𝑳𝑬 (deg)
(L.E. Max

Turning Angle )

𝚫𝐬𝐦𝐚𝐱 ×𝒄𝒓𝒆𝒇
(Max tangential 
wall spacing)

𝚫𝐬𝐒𝐋 ×𝚫𝐬𝐰
(Shear Layer 

Spacing)

𝚫𝐬𝒘𝒈𝑻𝑬 ×𝚫𝐬𝐰
(Wake-grid 

spacing at T.E.)

Node 
Count

L1 5 2.0 0.06 200 10 129980

L2 9 1.0 0.03 100 5 262209

L3 17 0.5 0.015 50 2.5 686587

L4 33 0.25 0.0075 25 1.25 2166259



Mesh Adaption Study

• Sensor: second undivided differences in conservative variables (𝑞)
• Adaption performed with 2, 3, and 4 levels of refinement
• Starting mesh : coarse with only BL clustering; sans shear-layer spacing, wake grids
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Buning, P. G., and Pulliam, T. H., “Cartesian off-body grid adaption for viscous time-accurate flow simulation,” 20th AIAA
Computational Fluid Dynamics Conference 2011, 2011. https://doi.org/10.2514/6.2011-3693.
Buning, P. G., and Pulliam, T. H., “Near-body grid adaption for overset grids,” 46th AIAA Fluid Dynamics Conference, American
Institute of Aeronautics and Astronautics Inc, AIAA, 2016. https://doi.org/10.2514/6.2016-3326.

Mesh Parameter 𝚫𝐬𝐰 ×𝒄𝒓𝒆𝒇 𝒏𝒑𝑻𝑬 𝚫𝜽𝑳𝑬 (deg) 𝚫𝐬𝐦𝐚𝐱 ×𝒄𝒓𝒆𝒇 SR

Value 4.323×10>? 3 2.0 0.045 1.2



Meshes Generated From Adaption
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Starting Mesh

Final Mesh with Four Levels of Refinement

(𝛼 = 8∘)



Meshes Generated From Adaption
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Refined wakes

Refined cove
Refined boundary layers

(𝛼 = 8∘)

Refined cove



Meshes Generated From Adaption
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(𝛼 = 8∘)

Slat TE

Main TE

Flap TE



Wall-Normal Spacing
• Specified wall spacing: Δ𝑠! = 4.323×10"# (𝑦$ ≈ 1)
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y+ from 
computed 
solution

Actual wall 
spacing
( ×𝚫𝐬𝐰 )



Chordwise Spacing
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Best-Practice Mesh (Δ𝑠89: = 0.03𝑐#$%)

Adaptive Mesh, 2 Refinement Levels (Δ𝑠89: = 0.045𝑐#$%)



• Specified max 𝑆𝑅 = 1.15

Stretching Ratio
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Tangential Normal



𝛼 = 8∘
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Convergence of Aerodynamic Coefficients

𝛼 = 16∘



Surface Pressure Coefficient
(𝛼 = 8∘)
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Grid Convergence Study Adaptive Mesh

(L4)



Surface Pressure Coefficient 
(𝛼 = 16∘)
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Grid Convergence Study Adaptive Mesh

(L4)



Surface Skin Friction Coefficient
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𝛼 = 8∘ 𝛼 = 16∘



Velocity Profiles
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x/c = 0.15 (aft of suction peak) x/c = 1.0 (flap mid-chord)

𝛼 = 8∘ 𝛼 = 8∘

𝛼 = 16∘ 𝛼 = 16∘



Alpha Sweep — Total 
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Alpha Sweep
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Slat

Main

Flap



Flow Characteristics
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Suction
Shear Layers

Shear Layers
Flow Separation Wake

𝛼 = 8∘ 𝛼 = 16∘



Possible Source of Discrepancies
in Adaptive Meshes
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Starting Adaptive Mesh Adaptive Mesh with 4 
Levels of Refinement

Level 3 Grid 
Convergence Mesh

Spacing is finer in both directions
Only BL clustering refined



Effect of LE Refinement
on Adaptive Meshes

• Two factors to consider
– Fixed-grid convergence results
– Other adaption results presented at conference

• Investigated effect of using finer LE tangential spacing (Δ𝜃LM) in initial 
mesh on final solution
– Δ𝜃!" = 2.0∘, 1.0∘, 0.5∘, 0.25∘

– Adaption levels: 2-5
• Also investigated effect of prescribed refinement in LE regions in both 

tangential and normal directions coupled with adaption
– Δ𝜃!" = 2.0∘, 1.0∘, 0.5∘

– Adaption levels: 2-4
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Adapted Mesh with 
Prescribed LE Refinement
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Prescribed 
refinement 
regions

(Δ𝜃LM = 2. 0∘, 𝛼 = 8∘, 4 𝑙𝑒𝑣𝑒𝑙𝑠)



Comparisons of Adaptive Meshes
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Refined wakes

Refined cove regions

Refined boundary layers

Prescribed refinement regions



Meshes Generated From Adaption
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Refined wakes

Refined cove regions

Refined boundary layers

Prescribed 
Refinement Region

Refined boundary layers



Force Comparisons
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𝛼 = 8∘

𝛼 = 16∘



Section Pressure Coefficients

42

𝛼 = 8∘ 𝛼 = 16∘

Increased suction 
on solutions with 
pre-scribed LE 
adaption



Summary and Conclusions
• Lessons learned:

– Key features to resolve: Shear layers, wakes, suction regions
– Solutions are sensitive to wake resolution downstream of configuration
– C mesh and O mesh can produce similar results with proper TE and wake treatment
– Solutions are sensitive to normal spacing in near body grids, and trailing-edge 

resolution
– Mesh convergence study show solutions converge asymptotically
– Prescribing leading-edge refinement can assist with accuracy of adaptive solutions 

in OVERFLOW
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Summary and Conclusions
• Recommended Best Practices

– Use fine normal spacing to resolve wakes/shear layers from upstream elements 
– Wake should be refined up to a certain distance downstream of configuration
– May be beneficial to explicitly refine LE in adaption solutions
– Add wake grids if using O grid for near body meshes

• Future Investigations
– Differences in current best-practice mesh and adjoint-based result presented at 

conference
– Determine what is a sufficiently defined wake
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